Inverting The Generator Of A Generative Adversarial Network (II)
نویسندگان
چکیده
Generative adversarial networks (GANs) learn a deep generative model that is able to synthesise novel, highdimensional data samples. New data samples are synthesised by passing latent samples, drawn from a chosen prior distribution, through the generative model. Once trained, the latent space exhibits interesting properties, that may be useful for down stream tasks such as classification or retrieval. Unfortunately, GANs do not offer an “inverse model”, a mapping from data space back to latent space, making it difficult to infer a latent representation for a given data sample. In this paper, we introduce a technique, inversion, to project data samples, specifically images, to the latent space using a pre-trained GAN. Using our proposed inversion technique, we are able to identify which attributes of a dataset a trained GAN is able to model and quantify GAN performance, based on a reconstruction loss. We demonstrate how our proposed inversion technique may be used to quantitatively compare performance of various GAN models trained on three image datasets. We provide code for all of our experiments.
منابع مشابه
Automatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملInverting The Generator Of A Generative Adversarial Network
Generative adversarial networks (GANs) learn to synthesise new samples from a high-dimensional distribution by passing samples drawn from a latent space through a generative network. When the high-dimensional distribution describes images of a particular data set, the network should learn to generate visually similar image samples for latent variables that are close to each other in the latent ...
متن کاملFacegans: Stable Generative Adversarial Networks with High-quality Images
Generative Adversarial Networks (GANs) have shown impressive performance in producing images highly similar to original dataset under unsupervised learning. However, the losses of discriminator and generator are highly fluctuated, which affects the quality of fake images produced by the generator. In this work, we propose Face Generative Adversarial Networks (FaceGANs). Compared to the conventi...
متن کاملSyncGAN: Synchronize the Latent Space of Cross-modal Generative Adversarial Networks
Generative adversarial network (GAN) has achieved impressive success on cross-domain generation, but it faces difficulty in cross-modal generation due to the lack of a common distribution between heterogeneous data. Most existing methods of conditional based cross-modal GANs adopt the strategy of one-directional transfer and have achieved preliminary success on text-to-image transfer. Instead o...
متن کاملGenerating Images Part by Part with Composite Generative Adversarial Networks
Image generation remains a fundamental problem in artificial intelligence in general and deep learning in specific. The generative adversarial network (GAN) was successful in generating high quality samples of natural images. We propose a model called composite generative adversarial network, that reveals the complex structure of images with multiple generators in which each generator generates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.05701 شماره
صفحات -
تاریخ انتشار 2018